Skip to main content

Chan Park

Assistant Professor

Additional Campus Affiliations

Assistant Professor, Statistics

Highlighted Publications

Park, C., & Kang, H. (2022). Efficient semiparametric estimation of network treatment effects under partial interference. Biometrika, 109(4), 1015-1031. https://doi.org/10.1093/biomet/asac009

Wang, B., Park, C., Small, D. S., & Li, F. (Accepted/In press). Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2023.2289693

Park, C., Richardson, D. B., & Tchetgen Tchetgen, E. J. (2024). Single proxy control. Biometrics, 80(2), Article ujae027. https://doi.org/10.1093/biomtc/ujae027

Park, C., Chen, G., Yu, M., & Kang, H. (Accepted/In press). Minimum Resource Threshold Policy Under Partial Interference. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2023.2284422

Park, C., & Kang, H. (2023). Assumption-Lean Analysis of Cluster Randomized Trials in Infectious Diseases for Intent-to-Treat Effects and Network Effects. Journal of the American Statistical Association, 118(542), 1195-1206. https://doi.org/10.1080/01621459.2021.1983437

View all publications on Illinois Experts

Recent Publications

Park, C., & Kang, H. (2024). A groupwise approach for inferring heterogeneous treatment effects in causal inference. Journal of the Royal Statistical Society. Series A: Statistics in Society, 187(2), 374-392. https://doi.org/10.1093/jrsssa/qnad125

Park, C., Richardson, D. B., & Tchetgen Tchetgen, E. J. (2024). Single proxy control. Biometrics, 80(2), Article ujae027. https://doi.org/10.1093/biomtc/ujae027

Tchetgen Tchetgen, E. J., Park, C., & Richardson, D. B. (2024). Universal Difference-in-Differences for Causal Inference in Epidemiology. Epidemiology, 35(1), 16-22. https://doi.org/10.1097/EDE.0000000000001676

Wang, B., Park, C., Small, D. S., & Li, F. (Accepted/In press). Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2023.2289693

Kang, H., Park, C., & Trane, R. (2023). Propensity Score Modeling: Key Challenges When Moving Beyond the No-Interference Assumption. Observational Studies, 9(1), 43-53. https://doi.org/10.1353/obs.2023.0003

View all publications on Illinois Experts