Skip to main content

Ruoqing Zhu

Associate Professor


Ruoqing Zhu completed his Ph.D. in Biostatistics from the University of North Carolina, Chapel Hill in 2013. From 2013 to 2015, he worked as a Postdoctoral Associate in the Department of Biostatistics at Yale University. He joined the Department of Statistics at UIUC in 2015. Besides this primary appointment, he is an inaugural member of the new "Engineering-Based" Carle Illinois College of Medicine. He was a Faculty Fellow at the National Center for Supercomputing Applications and affiliated with the Center for Genomic Diagnostics and the Personalized Nutrition Initiative at the Carl R. Woese Institute for Genomic Biology

Research Interests

Personalized Medicine
Random Forests
Reinforcement Learning
Survival Analysis
Sufficient Dimension Reduction
Biomedical Research: infectious diseases, food and nutrition, cancer


PhD, Biostatistics, University of North Carolina at Chapel Hill, 2013
MA., Statistics, Bowling Green State University, 2008
B.S., Mathematics, Nanjing University, 2006
B.S., Financial Engineering, Nanjing University, 2005

Courses Taught

At Department of Statistics:
STAT546STAT542, STAT432, STAT420, STAT400, CS598

At Carle Illinois College of Medicine (co-teaching):
Data Science ProjectFoundations: Molecules to Populations



Additional Campus Affiliations

Carle Illinois College of Medicine

  • Curriculum Oversight Committee, 2017-2020,
  • Course Associate Director, 2017-​​​​​

National Center for Supercomputing Applications

  • Faculty Fellow, 2018-2019 and 2020-2021

Carl R. Woese Institute for Genomic Biology

  • Steering Committee of Personalized Nutrition Initiative, 2022-
  • Center for Genomic Diagnostics

Recent Publications

Maino Vieytes, C. A., Zhu, R., Gany, F., Koester, B. D., & Arthur, A. E. (Accepted/In press). Dietary patterns among U.S. food insecure cancer survivors and the risk of mortality: NHANES 1999–2018. Cancer Causes and Control.

Shinn, L. M., Mansharamani, A., Baer, D. J., Novotny, J. A., Charron, C. S., Khan, N. A., Zhu, R., & Holscher, H. D. (2024). Fecal Metagenomics to Identify Biomarkers of Food Intake in Healthy Adults: Findings from Randomized, Controlled, Nutrition Trials. Journal of Nutrition, 154(1), 271-283.

Zhou, W., Zhu, R., & Qu, A. (2024). Estimating Optimal Infinite Horizon Dynamic Treatment Regimes via pT-Learning. Journal of the American Statistical Association, 119(545), 625-638.

Cui, Y., Kosorok, M. R., Sverdrup, E., Wager, S., & Zhu, R. (2023). Estimating heterogeneous treatment effects with right-censored data via causal survival forests. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 85(2), 179-211.

Guo, B., Holscher, H. D., Auvil, L. S., Welge, M. E., Bushell, C. B., Novotny, J. A., Baer, D. J., Burd, N. A., Khan, N. A., & Zhu, R. (2023). Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests. Statistics in Biosciences, 15(3), 545-561.

View all publications on Illinois Experts