
Contact Information
1409 W. Green Street
Urbana, IL 61801
Research Areas
Research Description
Markov processes, potential theory, stochastic analysis and branching processes
Additional Campus Affiliations
Professor, Mathematics
External Links
Recent Publications
Kim, P., Song, R., & Vondraček, Z. (2023). Positive self-similar Markov processes obtained by resurrection. Stochastic Processes and their Applications, 156, 379-420. https://doi.org/10.1016/j.spa.2022.11.014
Ren, Y-X., Song, R., & Yang, F. (2023). Branching Brownian motion in a periodic environment and uniqueness of pulsating traveling waves. Advances in Applied Probability, 55(2), 510-548. https://doi.org/10.1017/apr.2022.32
Cho, S., Kim, P., Song, R., & Vondraček, Z. (2022). Heat kernel estimates for subordinate Markov processes and their applications. Journal of Differential Equations, 316, 28-93. https://doi.org/10.1016/j.jde.2022.01.044
Huang, Q., Duan, J., & Song, R. (2022). Homogenization of nonlocal partial differential equations related to stochastic differential equations with Lévy noise. Bernoulli, 28(3), 1648-1674. https://doi.org/10.3150/21-BEJ1365
Kim, P., Song, R., & Vondraček, Z. (Accepted/In press). Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential. Mathematische Annalen. https://doi.org/10.1007/s00208-022-02544-z